Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 11.900
1.
Nat Commun ; 15(1): 3847, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719792

The development of reliable single-cell dispensers and substantial sensitivity improvement in mass spectrometry made proteomic profiling of individual cells achievable. Yet, there are no established methods for single-cell glycome analysis due to the inability to amplify glycans and sample losses associated with sample processing and glycan labeling. In this work, we present an integrated platform coupling online in-capillary sample processing with high-sensitivity label-free capillary electrophoresis-mass spectrometry for N-glycan profiling of single mammalian cells. Direct and unbiased quantitative characterization of single-cell surface N-glycomes are demonstrated for HeLa and U87 cells, with the detection of up to 100 N-glycans per single cell. Interestingly, N-glycome alterations are unequivocally detected at the single-cell level in HeLa and U87 cells stimulated with lipopolysaccharide. The developed workflow is also applied to the profiling of ng-level amounts (5-500 ng) of blood-derived protein, extracellular vesicle, and total plasma isolates, resulting in over 170, 220, and 370 quantitated N-glycans, respectively.


Electrophoresis, Capillary , Glycomics , Mass Spectrometry , Polysaccharides , Single-Cell Analysis , Humans , Electrophoresis, Capillary/methods , Polysaccharides/metabolism , Polysaccharides/blood , Single-Cell Analysis/methods , HeLa Cells , Mass Spectrometry/methods , Glycomics/methods , Proteomics/methods , Extracellular Vesicles/metabolism , Lipopolysaccharides , Blood Proteins/analysis , Blood Proteins/metabolism
2.
Nat Commun ; 15(1): 3975, 2024 May 10.
Article En | MEDLINE | ID: mdl-38729930

Oxidoreductases have evolved tyrosine/tryptophan pathways that channel highly oxidizing holes away from the active site to avoid damage. Here we dissect such a pathway in a bacterial LPMO, member of a widespread family of C-H bond activating enzymes with outstanding industrial potential. We show that a strictly conserved tryptophan is critical for radical formation and hole transference and that holes traverse the protein to reach a tyrosine-histidine pair in the protein's surface. Real-time monitoring of radical formation reveals a clear correlation between the efficiency of hole transference and enzyme performance under oxidative stress. Residues involved in this pathway vary considerably between natural LPMOs, which could reflect adaptation to different ecological niches. Importantly, we show that enzyme activity is increased in a variant with slower radical transference, providing experimental evidence for a previously postulated trade-off between activity and redox robustness.


Bacterial Proteins , Mixed Function Oxygenases , Oxidation-Reduction , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Catalytic Domain , Tryptophan/metabolism , Polysaccharides/metabolism , Mutation , Oxidative Stress , Tyrosine/metabolism , Models, Molecular , Histidine/metabolism , Histidine/genetics
3.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731824

Agar, as a seaweed polysaccharide mainly extracted from Gracilariopsis lemaneiformis, has been commercially applied in multiple fields. To investigate factors indicating the agar accumulation in G. lemaneiformis, the agar content, soluble polysaccharides content, and expression level of 11 genes involved in the agar biosynthesis were analysed under 4 treatments, namely salinity, temperature, and nitrogen and phosphorus concentrations. The salinity exerted the greatest impact on the agar content. Both high (40‱) and low (10‱, 20‱) salinity promoted agar accumulation in G. lemaneiformis by 4.06%, 2.59%, and 3.00%, respectively. The content of agar as a colloidal polysaccharide was more stable than the soluble polysaccharide content under the treatments. No significant correlation was noted between the two polysaccharides, and between the change in the agar content and the relative growth rate of the algae. The expression of all 11 genes was affected by the 4 treatments. Furthermore, in the cultivar 981 with high agar content (21.30 ± 0.95%) compared to that (16.23 ± 1.59%) of the wild diploid, the transcriptional level of 9 genes related to agar biosynthesis was upregulated. Comprehensive analysis of the correlation between agar accumulation and transcriptional level of genes related to agar biosynthesis in different cultivation conditions and different species of G. lemaneiformis, the change in the relative expression level of glucose-6-phosphate isomerase II (gpiII), mannose-6-phosphate isomerase (mpi), mannose-1-phosphate guanylyltransferase (mpg), and galactosyltransferase II (gatII) genes was highly correlated with the relative agar accumulation. This study lays a basis for selecting high-yield agar strains, as well as for targeted breeding, by using gene editing tools in the future.


Agar , Rhodophyta , Rhodophyta/genetics , Rhodophyta/metabolism , Rhodophyta/growth & development , Salinity , Gene Expression Regulation, Plant , Polysaccharides/metabolism , Polysaccharides/biosynthesis , Temperature , Nitrogen/metabolism
4.
Front Immunol ; 15: 1372927, 2024.
Article En | MEDLINE | ID: mdl-38742105

The parasitic helminth Schistosoma mansoni is a potent inducer of type 2 immune responses by stimulating dendritic cells (DCs) to prime T helper 2 (Th2) responses. We previously found that S. mansoni soluble egg antigens (SEA) promote the synthesis of Prostaglandin E2 (PGE2) by DCs through ERK-dependent signaling via Dectin-1 and Dectin-2 that subsequently induces OX40L expression, licensing them for Th2 priming, yet the ligands present in SEA involved in driving this response and whether specific targeting of PGE2 synthesis by DCs could affect Th2 polarization are unknown. We here show that the ability of SEA to bind Dectin-2 and drive ERK phosphorylation, PGE2 synthesis, OX40L expression, and Th2 polarization is impaired upon cleavage of high-mannose glycans by Endoglycosidase H treatment. This identifies high-mannose glycans present on glycoproteins in SEA as important drivers of this signaling axis. Moreover, we find that OX40L expression and Th2 induction are abrogated when microsomal prostaglandin E synthase-1 (mPGES) is selectively inhibited, but not when a general COX-1/2 inhibitor is used. This shows that the de novo synthesis of PGE2 is vital for the Th2 priming function of SEA-stimulated DCs as well as points to the potential existence of other COX-dependent lipid mediators that antagonize PGE2-driven Th2 polarization. Lastly, specific PGE2 inhibition following immunization with S. mansoni eggs dampened the egg-specific Th cell response. In summary, our findings provide new insights in the molecular mechanisms underpinning Th2 induction by S. mansoni and identify druggable targets for potential control of helminth driven-Th2 responses.


Antigens, Helminth , Dendritic Cells , Dinoprostone , Lectins, C-Type , Mannose , Polysaccharides , Schistosoma mansoni , Th2 Cells , Animals , Schistosoma mansoni/immunology , Dinoprostone/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism , Lectins, C-Type/metabolism , Lectins, C-Type/immunology , Mannose/metabolism , Mannose/immunology , Mice , Polysaccharides/immunology , Polysaccharides/metabolism , Antigens, Helminth/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Schistosomiasis mansoni/immunology , Schistosomiasis mansoni/metabolism , Schistosomiasis mansoni/parasitology , Ovum/immunology , Ovum/metabolism , Mice, Inbred C57BL , OX40 Ligand/metabolism
5.
J Transl Med ; 22(1): 456, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745252

BACKGROUND: Changes in plasma protein glycosylation are known to functionally affect proteins and to associate with liver diseases, including cirrhosis and hepatocellular carcinoma. Autoimmune hepatitis (AIH) is a liver disease characterized by liver inflammation and raised serum levels of IgG, and is difficult to distinguish from other liver diseases. The aim of this study was to examine plasma and IgG-specific N-glycosylation in AIH and compare it with healthy controls and other liver diseases. METHODS: In this cross-sectional cohort study, total plasma N-glycosylation and IgG Fc glycosylation analysis was performed by mass spectrometry for 66 AIH patients, 60 age- and sex-matched healthy controls, 31 primary biliary cholangitis patients, 10 primary sclerosing cholangitis patients, 30 non-alcoholic fatty liver disease patients and 74 patients with viral or alcoholic hepatitis. A total of 121 glycans were quantified per individual. Associations between glycosylation traits and AIH were investigated as compared to healthy controls and other liver diseases. RESULTS: Glycan traits bisection (OR: 3.78 [1.88-9.35], p-value: 5.88 × 10- 3), tetraantennary sialylation per galactose (A4GS) (OR: 2.88 [1.75-5.16], p-value: 1.63 × 10- 3), IgG1 galactosylation (OR: 0.35 [0.2-0.58], p-value: 3.47 × 10- 5) and hybrid type glycans (OR: 2.73 [1.67-4.89], p-value: 2.31 × 10- 3) were found as discriminators between AIH and healthy controls. High A4GS differentiated AIH from other liver diseases, while bisection associated with cirrhosis severity. CONCLUSIONS: Compared to other liver diseases, AIH shows distinctively high A4GS levels in plasma, with potential implications on glycoprotein function and clearance. Plasma-derived glycosylation has potential to be used as a diagnostic marker for AIH in the future. This may alleviate the need for a liver biopsy at diagnosis. Glycosidic changes should be investigated further in longitudinal studies and may be used for diagnostic and monitoring purposes in the future.


Hepatitis, Autoimmune , Polysaccharides , Humans , Hepatitis, Autoimmune/blood , Female , Male , Polysaccharides/blood , Polysaccharides/metabolism , Middle Aged , Glycosylation , Case-Control Studies , Immunoglobulin G/blood , Liver Diseases/blood , Adult , Cross-Sectional Studies , Aged
6.
Microb Cell Fact ; 23(1): 131, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711081

BACKGROUND: Komagataella phaffii (Pichia pastoris) has emerged as a common and robust biotechnological platform organism, to produce recombinant proteins and other bioproducts of commercial interest. Key advantage of K. phaffii is the secretion of recombinant proteins, coupled with a low host protein secretion. This facilitates downstream processing, resulting in high purity of the target protein. However, a significant but often overlooked aspect is the presence of an unknown polysaccharide impurity in the supernatant. Surprisingly, this impurity has received limited attention in the literature, and its presence and quantification are rarely addressed. RESULTS: This study aims to quantify this exopolysaccharide in high cell density recombinant protein production processes and identify its origin. In stirred tank fed-batch fermentations with a maximal cell dry weight of 155 g/L, the polysaccharide concentration in the supernatant can reach up to 8.7 g/L. This level is similar to the achievable target protein concentration. Importantly, the results demonstrate that exopolysaccharide production is independent of the substrate and the protein production process itself. Instead, it is directly correlated with biomass formation and proportional to cell dry weight. Cell lysis can confidently be ruled out as the source of this exopolysaccharide in the culture medium. Furthermore, the polysaccharide secretion can be linked to a mutation in the HOC1 gene, featured by all derivatives of strain NRRL Y-11430, leading to a characteristic thinner cell wall. CONCLUSIONS: This research sheds light on a previously disregarded aspect of K. phaffii fermentations, emphasizing the importance of monitoring and addressing the exopolysaccharide impurity in biotechnological applications, independent of the recombinant protein produced.


Fermentation , Recombinant Proteins , Saccharomycetales , Recombinant Proteins/biosynthesis , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Saccharomycetales/metabolism , Saccharomycetales/genetics , Biomass , Batch Cell Culture Techniques , Polysaccharides/metabolism , Polysaccharides/biosynthesis
7.
Front Immunol ; 15: 1361240, 2024.
Article En | MEDLINE | ID: mdl-38698868

N-glycosylation influences the effectiveness of immune globulin G (IgG) and thus the immunological downstream responses of immune cells. This impact arises from the presence of N-glycans within the Fc region, which not only alters the conformation of IgG but also influences its steric hindrance. Consequently, these modifications affect the interaction between IgG and its binding partners within the immune system. Moreover, this posttranslational modification vary according to the physiological condition of each individual. In this study, we examined the N-glycosylation of IgG in pigs from birth to five months of age. Our analysis identified a total of 48 distinct N-glycan structures. Remarkably, we observed defined changes in the composition of these N-glycans during postnatal development. The presence of agalactosylated and sialylated structures increases in relation to the number of N-glycans terminated by galactose residues during the first months of life. This shift may indicate a transition from passively transferred antibodies from the colostrum of the sow to the active production of endogenous IgG by the pig's own immune system.


Immunoglobulin G , Polysaccharides , Animals , Glycosylation , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Swine , Polysaccharides/metabolism , Polysaccharides/immunology , Protein Processing, Post-Translational , Animals, Newborn , Female
8.
Nat Commun ; 15(1): 3755, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704385

Heparin is an important anticoagulant drug, and microbial heparin biosynthesis is a potential alternative to animal-derived heparin production. However, effectively using heparin synthesis enzymes faces challenges, especially with microbial recombinant expression of active heparan sulfate N-deacetylase/N-sulfotransferase. Here, we introduce the monosaccharide N-trifluoroacetylglucosamine into Escherichia coli K5 to facilitate sulfation modification. The Protein Repair One-Stop Service-Focused Rational Iterative Site-specific Mutagenesis (PROSS-FRISM) platform is used to enhance sulfotransferase efficiency, resulting in the engineered NST-M8 enzyme with significantly improved stability (11.32-fold) and activity (2.53-fold) compared to the wild-type N-sulfotransferase. This approach can be applied to engineering various sulfotransferases. The multienzyme cascade reaction enables the production of active heparin from bioengineered heparosan, demonstrating anti-FXa (246.09 IU/mg) and anti-FIIa (48.62 IU/mg) activities. This study offers insights into overcoming challenges in heparin synthesis and modification, paving the way for the future development of animal-free heparins using a cellular system-based semisynthetic strategy.


Anticoagulants , Escherichia coli , Heparin , Sulfotransferases , Sulfotransferases/metabolism , Sulfotransferases/genetics , Heparin/metabolism , Heparin/biosynthesis , Anticoagulants/metabolism , Anticoagulants/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Metabolic Engineering/methods , Humans , Polysaccharides/metabolism , Polysaccharides/biosynthesis , Polysaccharides/chemistry , Mutagenesis, Site-Directed , Protein Engineering/methods , Disaccharides/metabolism , Disaccharides/biosynthesis , Disaccharides/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/genetics
9.
Nat Microbiol ; 9(5): 1176-1188, 2024 May.
Article En | MEDLINE | ID: mdl-38684911

Matching donor and recipient blood groups based on red blood cell (RBC) surface ABO glycans and antibodies in plasma is crucial to avoid potentially fatal reactions during transfusions. Enzymatic conversion of RBC glycans to the universal group O is an attractive solution to simplify blood logistics and prevent ABO-mismatched transfusions. The gut symbiont Akkermansia muciniphila can degrade mucin O-glycans including ABO epitopes. Here we biochemically evaluated 23 Akkermansia glycosyl hydrolases and identified exoglycosidase combinations which efficiently transformed both A and B antigens and four of their carbohydrate extensions. Enzymatic removal of canonical and extended ABO antigens on RBCs significantly improved compatibility with group O plasmas, compared to conversion of A or B antigens alone. Finally, structural analyses of two B-converting enzymes identified a previously unknown putative carbohydrate-binding module. This study demonstrates the potential utility of mucin-degrading gut bacteria as valuable sources of enzymes for production of universal blood for transfusions.


ABO Blood-Group System , Akkermansia , Glycoside Hydrolases , ABO Blood-Group System/immunology , Humans , Glycoside Hydrolases/metabolism , Mucins/metabolism , Erythrocytes/immunology , Polysaccharides/metabolism , Gastrointestinal Microbiome , Blood Group Antigens/metabolism , Blood Group Antigens/immunology , Bacterial Proteins/metabolism , Bacterial Proteins/immunology
10.
Cell Rep ; 43(4): 114012, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38573856

Plasmodium falciparum is a human-adapted apicomplexan parasite that causes the most dangerous form of malaria. P. falciparum cysteine-rich protective antigen (PfCyRPA) is an invasion complex protein essential for erythrocyte invasion. The precise role of PfCyRPA in this process has not been resolved. Here, we show that PfCyRPA is a lectin targeting glycans terminating with α2-6-linked N-acetylneuraminic acid (Neu5Ac). PfCyRPA has a >50-fold binding preference for human, α2-6-linked Neu5Ac over non-human, α2-6-linked N-glycolylneuraminic acid. PfCyRPA lectin sites were predicted by molecular modeling and validated by mutagenesis studies. Transgenic parasite lines expressing endogenous PfCyRPA with single amino acid exchange mutants indicated that the lectin activity of PfCyRPA has an important role in parasite invasion. Blocking PfCyRPA lectin activity with small molecules or with lectin-site-specific monoclonal antibodies can inhibit blood-stage parasite multiplication. Therefore, targeting PfCyRPA lectin activity with drugs, immunotherapy, or a vaccine-primed immune response is a promising strategy to prevent and treat malaria.


Erythrocytes , Plasmodium falciparum , Polysaccharides , Protozoan Proteins , Humans , Antigens, Protozoan/metabolism , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Erythrocytes/parasitology , Erythrocytes/metabolism , Lectins/metabolism , Lectins/genetics , Malaria, Falciparum/parasitology , Plasmodium falciparum/metabolism , Polysaccharides/metabolism , Protein Binding , Protozoan Proteins/metabolism , Protozoan Proteins/genetics
11.
Sci Total Environ ; 929: 172545, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38636868

Microalgal-bacterial symbioses are prevalent in aquatic ecosystems and play a pivotal role in carbon sequestration, significantly contributing to global carbon cycling. The understanding of the contribution of exopolysaccharides (EPSs), a crucial carbon-based component, to the structural integrity of microalgal-bacterial symbioses remains insufficiently elucidated. To address this gap, our study aims to enhance our comprehension of the composition and primary structure of EPSs within a specific type of granular microalgal-bacterial symbiosis named microalgal-bacterial granular sludge (MBGS). Our investigation reveals that the acidic EPSs characteristic of this symbiosis have molecular weights ranging from several hundred thousand to over one million Daltons, including components like glucopyranose, galactopyranose, mannose, and rhamnose. Our elucidation of the backbone linkage of a representative exopolysaccharide revealed a →3)-ß-D-Galp-(1→4)-ß-D-Glcp-(1→ glycosidic linkage. This linear structure closely resembles bacterial xanthan, while the branched chain structure bears similarities to algal EPSs. Our findings highlight the collaborative synthesis of acidic EPSs by both microalgae and bacteria, emphasizing their joint contribution in the production of macromolecules within microalgal-bacterial symbiosis. This collaborative synthesis underscores the intricate molecular interactions contributing to the stability and function of these symbiotic relationships.


Microalgae , Polysaccharides , Symbiosis , Microalgae/physiology , Polysaccharides/metabolism , Bacteria/metabolism , Polysaccharides, Bacterial/metabolism
12.
Microbiome ; 12(1): 77, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664737

BACKGROUND: The deep sea represents the largest marine ecosystem, driving global-scale biogeochemical cycles. Microorganisms are the most abundant biological entities and play a vital role in the cycling of organic matter in such ecosystems. The primary food source for abyssal biota is the sedimentation of particulate organic polymers. However, our knowledge of the specific biopolymers available to deep-sea microbes remains largely incomplete. One crucial rate-limiting step in organic matter cycling is the depolymerization of particulate organic polymers facilitated by extracellular enzymes (EEs). Therefore, the investigation of active EEs and the microbes responsible for their production is a top priority to better understand the key nutrient sources for deep-sea microbes. RESULTS: In this study, we conducted analyses of extracellular enzymatic activities (EEAs), metagenomics, and metatranscriptomics from seawater samples of 50-9305 m from the Mariana Trench. While a diverse array of microbial groups was identified throughout the water column, only a few exhibited high levels of transcriptional activities. Notably, microbial populations actively transcribing EE genes involved in biopolymer processing in the abyssopelagic (4700 m) and hadopelagic zones (9305 m) were primarily associated with the class Actinobacteria. These microbes actively transcribed genes coding for enzymes such as cutinase, laccase, and xyloglucanase which are capable of degrading phytoplankton polysaccharides as well as GH23 peptidoglycan lyases and M23 peptidases which have the capacity to break down peptidoglycan. Consequently, corresponding enzyme activities including glycosidases, esterase, and peptidases can be detected in the deep ocean. Furthermore, cell-specific EEAs increased at 9305 m compared to 4700 m, indicating extracellular enzymes play a more significant role in nutrient cycling in the deeper regions of the Mariana Trench. CONCLUSIONS: Transcriptomic analyses have shed light on the predominant microbial population actively participating in organic matter cycling in the deep-sea environment of the Mariana Trench. The categories of active EEs suggest that the complex phytoplankton polysaccharides (e.g., cutin, lignin, and hemicellulose) and microbial peptidoglycans serve as the primary nutrient sources available to deep-sea microbes. The high cell-specific EEA observed in the hadal zone underscores the robust polymer-degrading capacities of hadal microbes even in the face of the challenging conditions they encounter in this extreme environment. These findings provide valuable new insights into the sources of nutrition, the key microbes, and the EEs crucial for biopolymer degradation in the deep seawater of the Mariana Trench. Video Abstract.


Bacteria , Metagenomics , Nutrients , Peptidoglycan , Phytoplankton , Polysaccharides , Seawater , Polysaccharides/metabolism , Seawater/microbiology , Phytoplankton/metabolism , Phytoplankton/genetics , Nutrients/metabolism , Peptidoglycan/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Microbiota
13.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38674051

The spike protein receptor-binding domain (RBD) of SARS-CoV-2 is required for the infection of human cells. It is the main target that elicits neutralizing antibodies and also a major component of diagnostic kits. The large demand for this protein has led to the use of plants as a production platform. However, it is necessary to determine the N-glycan structures of an RBD to investigate its efficacy and functionality as a vaccine candidate or diagnostic reagent. Here, we analyzed the N-glycan profile of the RBD produced in rice callus. Of the two potential N-glycan acceptor sites, we found that one was not utilized and the other contained a mixture of complex-type N-glycans. This differs from the heterogeneous mixture of N-glycans found when an RBD is expressed in other hosts, including Nicotiana benthamiana. By comparing the glycosylation profiles of different hosts, we can select platforms that produce RBDs with the most beneficial N-glycan structures for different applications.


Oryza , Polysaccharides , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Oryza/metabolism , Oryza/genetics , Oryza/virology , Polysaccharides/metabolism , Glycosylation , Humans , SARS-CoV-2/metabolism , Protein Domains , Protein Binding , Plants, Genetically Modified/metabolism , COVID-19/virology , COVID-19/metabolism
14.
Glycoconj J ; 41(2): 163-174, 2024 Apr.
Article En | MEDLINE | ID: mdl-38642280

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide COVID-19 pandemic, leading to 6.8 million deaths. Numerous variants have emerged since its outbreak, resulting in its significantly enhanced ability to spread among humans. As with many other viruses, SARS­CoV­2 utilizes heparan sulfate (HS) glycosaminoglycan (GAG) on the surface of host cells to facilitate viral attachment and initiate cellular entry through the ACE2 receptor. Therefore, interfering with virion-HS interactions represents a promising target to develop broad-spectrum antiviral therapeutics. Sulfated glycans derived from marine organisms have been proven to be exceptional reservoirs of naturally existing HS mimetics, which exhibit remarkable therapeutic properties encompassing antiviral/microbial, antitumor, anticoagulant, and anti-inflammatory activities. In the current study, the interactions between the receptor-binding domain (RBD) of S-protein of SARS-CoV-2 (both WT and XBB.1.5 variants) and heparin were applied to assess the inhibitory activity of 10 marine-sourced glycans including three sulfated fucans, three fucosylated chondroitin sulfates and two fucoidans derived from sea cucumbers, sea urchin and seaweed Saccharina japonica, respectively. The inhibitory activity of these marine derived sulfated glycans on the interactions between RBD of S-protein and heparin was evaluated using Surface Plasmon Resonance (SPR). The RBDs of S-proteins from both Omicrion XBB.1.5 and wild-type (WT) were found to bind to heparin, which is a highly sulfated form of HS. All the tested marine-sourced sulfated glycans exhibited strong inhibition of WT and XBB.1.5 S-protein binding to heparin. We believe the study on the molecular interactions between S-proteins and host cell glycosaminoglycans provides valuable insight for the development of marine-sourced, glycan-based inhibitors as potential anti-SARS-CoV-2 agents.


Heparin , Polysaccharides , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Heparin/pharmacology , Heparin/chemistry , Heparin/metabolism , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/metabolism , Humans , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , COVID-19/virology , COVID-19/metabolism , Protein Binding , Animals , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Heparitin Sulfate/metabolism , Heparitin Sulfate/chemistry
15.
Glycoconj J ; 41(2): 133-149, 2024 Apr.
Article En | MEDLINE | ID: mdl-38656600

Glycans have attracted much attention in cancer therapeutic strategies, and cell surface proteins and lipids with glycans are known to be altered during the carcinogenic process. However, our understanding of how the glycogenes profile responds to drug stimulation remains incomplete. In this study, we search public databases for Sequence Read Archive data on drug-treated liver cancer cells, with the aim to comprehensively analyze the drug responses of glycogenes via bioinformatic meta-analysis. The study comprised 86 datasets, encompassing eight distinct liver cancer cell lines and 13 different drugs. Differentially expressed genes were quantified, and 399 glycogenes were identified. The glycogenes signature was then analyzed using bioinformatics methodologies. In the Protein-protein interaction network analysis, we identified drug-responsive glycogenes such as Beta-1,4-Galactosyltransferase 1, GDP-Mannose 4,6-Dehydratase, UDP-Glucose Ceramide Glucosyltransferase, and Solute Carrier Family 2 Member 4 as key glycan biomarkers. In the enrichment analysis using the pathway list of glycogenes, the results also demonstrated that drug stimulation resulted in alterations to glycopathway-related genes involved in several processes, namely O-Mannosylation, POMGNT2 Type, Capping, Heparan Sulfate Sulfation, and Glucuronidation pathways. These genes and pathways commonly exhibit variable expression across multiple liver cancer cells in response to the same drug, making them potential targets for new cancer therapies. In addition to their primary roles, drugs may also participate in the regulation of glycans. The insights from this study could pave the way for the development of liver cancer therapies that target the regulation of gene profiles involved in the biosynthesis of glycans.


Liver Neoplasms , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/drug therapy , RNA-Seq , Polysaccharides/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/drug therapy , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Protein Interaction Maps
16.
Glycobiology ; 34(6)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38579012

Biological experiments are often conducted in vitro using immortalized cells due to their accessibility and ease of propagation compared to primary cells and live animals. However, immortalized cells may present different proteomic and glycoproteomic characteristics from the primary cell source due to the introduction of genes that enhance proliferation (e.g. CDK4) or enable telomere lengthening. To demonstrate the changes in phenotype upon CDK4-transformation, we performed LC-MS/MS glycomic and proteomic characterizations of a human lung cancer primary cell line (DTW75) and a CDK4-transformed cell line (GL01) derived from DTW75. We observed that the primary and CDK4-transformed cells expressed significantly different levels of sialylated, fucosylated, and sialofucosylated N-glycans. Specifically, the primary cells expressed higher levels of hybrid- and complex-type sialylated N-glycans, while CDK4-transformed cells expressed higher levels of complex-type fucosylated and sialofucosylated N-glycans. Further, we compared the proteomic differences between the cell lines and found that CDK4-transformed cells expressed higher levels of RNA-binding and adhesion proteins. Further, we observed that the CDK4-transformed cells changed N-glycosylation after 31 days in cell culture, with a decrease in high-mannose and increase in fucosylated, sialylated, and sialofucosylated N-glycans. Identifying these changes between primary and CDK4-transformed cells will provide useful insight when adapting cell lines that more closely resemble in vivo physiological conditions.


Cyclin-Dependent Kinase 4 , Lung Neoplasms , Polysaccharides , Proteome , Humans , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 4/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Proteome/metabolism , Proteome/analysis , Polysaccharides/metabolism , Cell Line, Tumor , Glycosylation , Glycomics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/genetics
17.
Sci Rep ; 14(1): 9361, 2024 04 23.
Article En | MEDLINE | ID: mdl-38654091

With the improvements in mechanization levels, it is difficult for the traditional intercropping planting patterns to meet the needs of mechanization. In the traditional maize‒soybean intercropping, maize has a shading effect on soybean, which leads to a decrease in soybean photosynthetic capacity and stem bend resistance, resulting in severe lodging, which greatly affects soybean yield. In this study, we investigated the effects of three intercropping ratios (four rows of maize and four rows of soybean; four rows of maize and six rows of soybean; six rows of maize and six rows of soybean) and two planting patterns (narrow-wide row planting pattern of 80-50 cm and uniform-ridges planting pattern of 65 cm) on soybean canopy photosynthesis, stem bending resistance, cellulose, hemicellulose, lignin and related enzyme activities. Compared with the uniform-ridge planting pattern, the narrow-wide row planting pattern significantly increased the LAI, PAR, light transmittance and compound yield by 6.06%, 2.49%, 5.68% and 5.95%, respectively. The stem bending resistance and cellulose, hemicellulose, lignin and PAL, TAL and CAD activities were also significantly increased. Compared with those under the uniform-ridge planting pattern, these values increased by 7.74%, 3.04%, 8.42%, 9.76%, 7.39%, 10.54% and 8.73% respectively. Under the three intercropping ratios, the stem bending resistance, cellulose, hemicellulose, lignin content and PAL, TAL, and CAD activities in the M4S6 treatment were significantly greater than those in the M4S4 and M6S6 treatments. Compared with the M4S4 treatment, these variables increased by 12.05%, 11.09%, 21.56%, 11.91%, 18.46%, 16.1%, and 16.84%, respectively, and compared with the M6S6 treatment, they increased by 2.06%, 2.53%, 2.78%, 2.98%, 8.81%, 4.59%, and 4.36%, respectively. The D-M4S6 treatment significantly improved the lodging resistance of soybean and weakened the negative impact of intercropping on soybean yield. Therefore, based on the planting pattern of narrow-wide row maize‒soybean intercropping planting pattern, four rows of maize and six rows of soybean were more effective at improving the lodging resistance of soybean in the semiarid region of western China.


Glycine max , Photosynthesis , Zea mays , Glycine max/growth & development , Zea mays/growth & development , Zea mays/physiology , Cellulose/metabolism , Lignin/metabolism , Agriculture/methods , Polysaccharides/metabolism , Crop Production/methods
18.
Glycobiology ; 34(6)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38590172

Human noroviruses, globally the main cause of viral gastroenteritis, show strain specific affinity for histo-blood group antigens (HBGA) and can successfully be propagated ex vivo in human intestinal enteroids (HIEs). HIEs established from jejunal stem cells of individuals with different ABO, Lewis and secretor geno- and phenotypes, show varying susceptibility to such infections. Using bottom-up glycoproteomic approaches we have defined and compared the N-linked glycans of glycoproteins of seven jejunal HIEs. Membrane proteins were extracted, trypsin digested, and glycopeptides enriched by hydrophilic interaction liquid chromatography and analyzed by nanoLC-MS/MS. The Byonic software was used for glycopeptide identification followed by hands-on verifications and interpretations. Glycan structures and attachment sites were identified from MS2 spectra obtained by higher-energy collision dissociation through analysis of diagnostic saccharide oxonium ions (B-ions), stepwise glycosidic fragmentation of the glycans (Y-ions), and peptide sequence ions (b- and y-ions). Altogether 694 unique glycopeptides from 93 glycoproteins were identified. The N-glycans encompassed pauci- and oligomannose, hybrid- and complex-type structures. Notably, polyfucosylated HBGA-containing glycopeptides of the four glycoproteins tetraspanin-8, carcinoembryonic antigen-related cell adhesion molecule 5, sucrose-isomaltase and aminopeptidase N were especially prominent and were characterized in detail and related to donor ABO, Lewis and secretor types of each HIE. Virtually no sialylated N-glycans were identified for these glycoproteins suggesting that terminal sialylation was infrequent compared to fucosylation and HBGA biosynthesis. This approach gives unique site-specific information on the structural complexity of N-linked glycans of glycoproteins of human HIEs and provides a platform for future studies on the role of host glycoproteins in gastrointestinal infectious diseases.


Glycoproteins , Humans , Glycoproteins/metabolism , Glycoproteins/chemistry , Proteomics/methods , Blood Group Antigens/metabolism , Blood Group Antigens/chemistry , Polysaccharides/chemistry , Polysaccharides/metabolism , Fucose/metabolism , Fucose/chemistry , Phenotype , Glycosylation , ABO Blood-Group System/metabolism , ABO Blood-Group System/chemistry
19.
Biochim Biophys Acta Gen Subj ; 1868(6): 130617, 2024 Jun.
Article En | MEDLINE | ID: mdl-38614280

BACKGROUND: Sialylation of glycoproteins, including integrins, is crucial in various cancers and diseases such as immune disorders. These modifications significantly impact cellular functions and are associated with cancer progression. Sialylation, catalyzed by specific sialyltransferases (STs), has traditionally been considered to be regulated at the mRNA level. SCOPE OF REVIEW: Recent research has expanded our understanding of sialylation, revealing ST activity changes beyond mRNA level variations. This includes insights into COPI vesicle formation and Golgi apparatus maintenance and identifying specific target proteins of STs that are not predictable through recombinant enzyme assays. MAJOR CONCLUSIONS: This review summarizes that Golgi-associated pathways largely influence the regulation of STs. GOLPH3, GORAB, PI4K, and FAK have become critical elements in sialylation regulation. Some STs have been revealed to possess specificity for specific target proteins, suggesting the presence of additional, enzyme-specific regulatory mechanisms. GENERAL SIGNIFICANCE: This study enhances our understanding of the molecular interplay in sialylation regulation, mainly focusing on the role of integrin and FAK. It proposes a bidirectional system where sialylations might influence integrins and vice versa. The diversity of STs and their specific linkages offer new perspectives in cancer research, potentially broadening our understanding of cellular mechanisms and opening avenues for new therapeutic approaches in targeting sialylation pathways.


Integrins , Polysaccharides , Sialyltransferases , Humans , Integrins/metabolism , Sialyltransferases/metabolism , Polysaccharides/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Animals , Golgi Apparatus/metabolism
20.
Cell Rep Methods ; 4(4): 100744, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38582075

A comprehensive analysis of site-specific protein O-glycosylation is hindered by the absence of a consensus O-glycosylation motif, the diversity of O-glycan structures, and the lack of a universal enzyme that cleaves attached O-glycans. Here, we report the development of a robust O-glycoproteomic workflow for analyzing complex biological samples by combining four different strategies: removal of N-glycans, complementary digestion using O-glycoprotease (IMPa) with/without another protease, glycopeptide enrichment, and mass spectrometry with fragmentation of glycopeptides using stepped collision energy. Using this workflow, we cataloged 474 O-glycopeptides on 189 O-glycosites derived from 79 O-glycoproteins from human plasma. These data revealed O-glycosylation of several abundant proteins that have not been previously reported. Because many of the proteins that contained unannotated O-glycosylation sites have been extensively studied, we wished to confirm glycosylation at these sites in a targeted fashion. Thus, we analyzed selected purified proteins (kininogen-1, fetuin-A, fibrinogen, apolipoprotein E, and plasminogen) in independent experiments and validated the previously unknown O-glycosites.


Glycoproteins , Proteome , Proteomics , Workflow , Humans , Glycosylation , Glycoproteins/metabolism , Glycoproteins/chemistry , Proteomics/methods , Proteome/metabolism , Proteome/analysis , Glycopeptides/analysis , Glycopeptides/chemistry , Glycopeptides/metabolism , Kininogens/metabolism , Kininogens/chemistry , Polysaccharides/metabolism , Apolipoproteins E/metabolism , Apolipoproteins E/chemistry , Fibrinogen/metabolism , Fibrinogen/chemistry , alpha-2-HS-Glycoprotein/metabolism , alpha-2-HS-Glycoprotein/analysis
...